summaryrefslogtreecommitdiff
path: root/test/test.hs
blob: 7a6e74d13caf299d415b0be60a22fd95896c0117 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}

{-# OPTIONS_GHC -fno-warn-orphans #-}

module Main where

#if !MIN_VERSION_base(4,8,0)
import           Control.Applicative
#endif
import           Control.Monad
import           Data.Int
import           Data.Word
import           Data.Scientific                    as Scientific
import           Test.Tasty
import           Test.Tasty.Runners.AntXML
import           Test.Tasty.HUnit                          (testCase, (@?=), Assertion)
import qualified Test.SmallCheck                    as SC
import qualified Test.SmallCheck.Series             as SC
import qualified Test.Tasty.SmallCheck              as SC  (testProperty)
import qualified Test.QuickCheck                    as QC
import qualified Test.Tasty.QuickCheck              as QC  (testProperty)
import qualified Data.Binary                        as Binary (encode, decode)
import qualified Data.Text.Lazy                     as TL  (unpack)
import qualified Data.Text.Lazy.Builder             as TLB (toLazyText)
import qualified Data.Text.Lazy.Builder.Scientific  as T
import           Numeric ( floatToDigits )

import qualified Data.ByteString.Lazy.Char8         as BLC8
import qualified Data.ByteString.Builder.Scientific as B
import qualified Data.ByteString.Builder            as B

main :: IO ()
main = testMain $ testGroup "scientific"
  [ smallQuick "normalization"
       (SC.over   normalizedScientificSeries $ \s ->
            s /= 0 SC.==> abs (Scientific.coefficient s) `mod` 10 /= 0)
       (QC.forAll normalizedScientificGen    $ \s ->
            s /= 0 QC.==> abs (Scientific.coefficient s) `mod` 10 /= 0)

  , testGroup "Binary"
    [ testProperty "decode . encode == id" $ \s ->
        Binary.decode (Binary.encode s) === s
    ]

  , testGroup "Parsing"
    [ testCase "reads \"\""        $ testReads ""        []
    , testCase "reads \"1.\""      $ testReads "1."      [(1.0, ".")]
    , testCase "reads \"1.2e\""    $ testReads "1.2e"    [(1.2, "e")]
    , testCase "reads \"(1.3 )\""  $ testReads "(1.3 )"  [(1.3, "")]
    , testCase "reads \"((1.3))\"" $ testReads "((1.3))" [(1.3, "")]
    , testCase "reads \" 1.3\""    $ testReads " 1.3"    [(1.3, "")]
    ]

  , testGroup "Formatting"
    [ testProperty "read . show == id" $ \s -> read (show s) === s

    , testGroup "toDecimalDigits"
      [ smallQuick "laws"
          (SC.over   nonNegativeScientificSeries toDecimalDigits_laws)
          (QC.forAll nonNegativeScientificGen    toDecimalDigits_laws)

      , smallQuick "== Numeric.floatToDigits"
          (toDecimalDigits_eq_floatToDigits . SC.getNonNegative)
          (toDecimalDigits_eq_floatToDigits . QC.getNonNegative)
      ]

    , testGroup "Builder"
      [ testProperty "Text" $ \s ->
          formatScientific Scientific.Generic Nothing s ==
          TL.unpack (TLB.toLazyText $
                       T.formatScientificBuilder Scientific.Generic Nothing s)

      , testProperty "ByteString" $ \s ->
          formatScientific Scientific.Generic Nothing s ==
          BLC8.unpack (B.toLazyByteString $
                        B.formatScientificBuilder Scientific.Generic Nothing s)
      ]

    , testProperty "formatScientific_fromFloatDigits" $ \(d::Double) ->
        formatScientific Scientific.Generic Nothing (Scientific.fromFloatDigits d) ==
        show d

    -- , testProperty "formatScientific_realToFrac" $ \(d::Double) ->
    --     formatScientific B.Generic Nothing (realToFrac d :: Scientific) ==
    --     show d
    ]

  , testGroup "Num"
    [ testGroup "Equal to Rational"
      [ testProperty "fromInteger" $ \i -> fromInteger i === fromRational (fromInteger i)
      , testProperty "+"           $ bin (+)
      , testProperty "-"           $ bin (-)
      , testProperty "*"           $ bin (*)
      , testProperty "abs"         $ unary abs
      , testProperty "negate"      $ unary negate
      , testProperty "signum"      $ unary signum
      ]

    , testProperty "0 identity of +" $ \a -> a + 0 === a
    , testProperty "1 identity of *" $ \a -> 1 * a === a
    , testProperty "0 identity of *" $ \a -> 0 * a === 0

    , testProperty "associativity of +"         $ \a b c -> a + (b + c) === (a + b) + c
    , testProperty "commutativity of +"         $ \a b   -> a + b       === b + a
    , testProperty "distributivity of * over +" $ \a b c -> a * (b + c) === a * b + a * c

    , testProperty "subtracting the addition" $ \x y -> x + y - y === x

    , testProperty "+ and negate" $ \x -> x + negate x === 0
    , testProperty "- and negate" $ \x -> x - negate x === x + x

    , smallQuick "abs . negate == id"
        (SC.over   nonNegativeScientificSeries $ \x -> abs (negate x) === x)
        (QC.forAll nonNegativeScientificGen    $ \x -> abs (negate x) === x)
    ]

  , testGroup "Real"
    [ testProperty "fromRational . toRational == id" $ \x ->
        (fromRational . toRational) x === x
    ]

  , testGroup "RealFrac"
    [ testGroup "Equal to Rational"
      [ testProperty "properFraction" $ \x ->
          let (n1::Integer, f1::Scientific) = properFraction x
              (n2::Integer, f2::Rational)   = properFraction (toRational x)
          in (n1 == n2) && (f1 == fromRational f2)

      , testProperty "round" $ \(x::Scientific) ->
          (round x :: Integer) == round (toRational x)

      , testProperty "truncate" $ \(x::Scientific) ->
          (truncate x :: Integer) == truncate (toRational x)

      , testProperty "ceiling" $ \(x::Scientific) ->
          (ceiling x :: Integer) == ceiling (toRational x)

      , testProperty "floor" $ \(x::Scientific) ->
          (floor x :: Integer) == floor (toRational x)
      ]

    , testProperty "properFraction_laws" properFraction_laws

    , testProperty "round"    $ \s -> round    s == roundDefault    s
    , testProperty "truncate" $ \s -> truncate s == truncateDefault s
    , testProperty "ceiling"  $ \s -> ceiling  s == ceilingDefault  s
    , testProperty "floor"    $ \s -> floor    s == floorDefault    s
    ]

  , testGroup "Conversions"
    [ testProperty "fromRationalRepetend" $ \(l, r) -> r ==
        (case fromRationalRepetend (Just l) r of
          Left (s, rr) -> toRational s + rr
          Right (s, mbRepetend) ->
            case mbRepetend of
              Nothing       -> toRational s
              Just repetend -> toRationalRepetend s repetend)

    , testGroup "Float"  $ conversionsProperties (undefined :: Float)
    , testGroup "Double" $ conversionsProperties (undefined :: Double)

    , testGroup "floatingOrInteger"
      [ testProperty "correct conversion" $ \s ->
            case floatingOrInteger s :: Either Double Int of
              Left  d -> d == toRealFloat s
              Right i -> i == fromInteger (coefficient s') * 10^(base10Exponent s')
                  where
                    s' = normalize s
      , testProperty "Integer == Right" $ \(i::Integer) ->
          (floatingOrInteger (fromInteger i) :: Either Double Integer) == Right i
      , smallQuick "Double == Left"
          (\(d::Double) -> genericIsFloating d SC.==>
             (floatingOrInteger (realToFrac d) :: Either Double Integer) == Left d)
          (\(d::Double) -> genericIsFloating d QC.==>
             (floatingOrInteger (realToFrac d) :: Either Double Integer) == Left d)
      ]
    , testGroup "toBoundedInteger"
      [ testGroup "correct conversion"
        [ testProperty "Int64"       $ toBoundedIntegerConversion (undefined :: Int64)
        , testProperty "Word64"      $ toBoundedIntegerConversion (undefined :: Word64)
        , testProperty "NegativeNum" $ toBoundedIntegerConversion (undefined :: NegativeInt)
        ]
      ]
    ]
  , testGroup "toBoundedRealFloat"
    [ testCase "0 * 10^1000 == 0" $
        toBoundedRealFloat (scientific 0 1000) @?= Right (0 :: Float)
    ]
  , testGroup "toBoundedInteger"
    [ testGroup "to Int64" $
      [ testCase "succ of maxBound" $
        let i = succ . fromIntegral $ (maxBound :: Int64)
            s = scientific i 0
        in (toBoundedInteger s :: Maybe Int64) @?= Nothing
      , testCase "pred of minBound" $
        let i = pred . fromIntegral $ (minBound :: Int64)
            s = scientific i 0
        in (toBoundedInteger s :: Maybe Int64) @?= Nothing
      , testCase "0 * 10^1000 == 0" $
          toBoundedInteger (scientific 0 1000) @?= Just (0 :: Int64)
      ]
    ]
  , testGroup "Predicates"
    [ testProperty "isFloating" $ \s -> isFloating s ==      genericIsFloating s
    , testProperty "isInteger"  $ \s -> isInteger  s == not (genericIsFloating s)
    ]
  ]

testMain :: TestTree -> IO ()
testMain = defaultMainWithIngredients (antXMLRunner:defaultIngredients)

testReads :: String -> [(Scientific, String)] -> Assertion
testReads inp out = reads inp @?= out

genericIsFloating :: RealFrac a => a -> Bool
genericIsFloating a = fromInteger (floor a :: Integer) /= a

toDecimalDigits_eq_floatToDigits :: Double -> Bool
toDecimalDigits_eq_floatToDigits d =
    Scientific.toDecimalDigits (Scientific.fromFloatDigits d)
      == Numeric.floatToDigits 10 d

conversionsProperties :: forall realFloat.
                         ( RealFloat    realFloat
                         , QC.Arbitrary realFloat
                         , SC.Serial IO realFloat
                         , Show         realFloat
                         )
                      => realFloat -> [TestTree]
conversionsProperties _ =
  [
    -- testProperty "fromFloatDigits_1" $ \(d :: realFloat) ->
    --   Scientific.fromFloatDigits d === realToFrac d

    -- testProperty "fromFloatDigits_2" $ \(s :: Scientific) ->
    --   Scientific.fromFloatDigits (realToFrac s :: realFloat) == s

    testProperty "toRealFloat" $ \(d :: realFloat) ->
      (Scientific.toRealFloat . realToFrac) d == d

  , testProperty "toRealFloat . fromFloatDigits == id" $ \(d :: realFloat) ->
      (Scientific.toRealFloat . Scientific.fromFloatDigits) d == d

  -- , testProperty "fromFloatDigits . toRealFloat == id" $ \(s :: Scientific) ->
  --     Scientific.fromFloatDigits (Scientific.toRealFloat s :: realFloat) == s
  ]

toBoundedIntegerConversion
    :: forall i. (Integral i, Bounded i)
    => i -> Scientific -> Bool
toBoundedIntegerConversion _ s =
    case toBoundedInteger s :: Maybe i of
      Just i -> i == (fromIntegral $ (coefficient s') * 10^(base10Exponent s')) &&
                i >= minBound &&
                i <= maxBound
        where
          s' = normalize s
      Nothing -> isFloating s ||
                 s < fromIntegral (minBound :: i) ||
                 s > fromIntegral (maxBound :: i)

testProperty :: (SC.Testable IO test, QC.Testable test)
             => TestName -> test -> TestTree
testProperty n test = smallQuick n test test

smallQuick :: (SC.Testable IO smallCheck, QC.Testable quickCheck)
             => TestName -> smallCheck -> quickCheck -> TestTree
smallQuick n sc qc = testGroup n
                     [ SC.testProperty "smallcheck" sc
                     , QC.testProperty "quickcheck" qc
                     ]

-- | ('==') specialized to 'Scientific' so we don't have to put type
-- signatures everywhere.
(===) :: Scientific -> Scientific -> Bool
(===) = (==)
infix 4 ===

bin :: (forall a. Num a => a -> a -> a) -> Scientific -> Scientific -> Bool
bin op a b = toRational (a `op` b) == toRational a `op` toRational b

unary :: (forall a. Num a => a -> a) -> Scientific -> Bool
unary op a = toRational (op a) == op (toRational a)

toDecimalDigits_laws :: Scientific -> Bool
toDecimalDigits_laws x =
  let (ds, e) = Scientific.toDecimalDigits x

      rule1 = n >= 1
      n     = length ds

      rule2 = toRational x == coeff * 10 ^^ e
      coeff = foldr (\di a -> a / 10 + fromIntegral di) 0 (0:ds)

      rule3 = all (\di -> 0 <= di && di <= 9) ds

      rule4 | n == 1    = True
            | otherwise = null $ takeWhile (==0) $ reverse ds

  in rule1 && rule2 && rule3 && rule4

properFraction_laws :: Scientific -> Bool
properFraction_laws x = fromInteger n + f === x        &&
                        (positive n == posX || n == 0) &&
                        (positive f == posX || f == 0) &&
                        abs f < 1
    where
      posX = positive x

      (n, f) = properFraction x :: (Integer, Scientific)

positive :: (Ord a, Num a) => a -> Bool
positive y = y >= 0

floorDefault :: Scientific -> Integer
floorDefault x = if r < 0 then n - 1 else n
                 where (n,r) = properFraction x

ceilingDefault :: Scientific -> Integer
ceilingDefault x = if r > 0 then n + 1 else n
                   where (n,r) = properFraction x

truncateDefault :: Scientific -> Integer
truncateDefault x =  m where (m,_) = properFraction x

roundDefault :: Scientific -> Integer
roundDefault x = let (n,r) = properFraction x
                     m     = if r < 0 then n - 1 else n + 1
                 in case signum (abs r - 0.5) of
                      -1 -> n
                      0  -> if even n then n else m
                      1  -> m
                      _  -> error "round default defn: Bad value"

newtype NegativeInt = NegativeInt Int
    deriving (Show, Enum, Eq, Ord, Num, Real, Integral)

instance Bounded NegativeInt where
    minBound = -100
    maxBound = -10

----------------------------------------------------------------------
-- SmallCheck instances
----------------------------------------------------------------------

instance (Monad m) => SC.Serial m Scientific where
    series = scientifics

scientifics :: (Monad m) => SC.Series m Scientific
scientifics = SC.cons2 scientific

nonNegativeScientificSeries :: (Monad m) => SC.Series m Scientific
nonNegativeScientificSeries = liftM SC.getNonNegative SC.series

normalizedScientificSeries :: (Monad m) => SC.Series m Scientific
normalizedScientificSeries = liftM Scientific.normalize SC.series


----------------------------------------------------------------------
-- QuickCheck instances
----------------------------------------------------------------------

instance QC.Arbitrary Scientific where
    arbitrary = QC.frequency
      [ (70, scientific <$> QC.arbitrary
                        <*> intGen)
      , (20, scientific <$> QC.arbitrary
                        <*> bigIntGen)
      , (10, scientific <$> pure 0
                        <*> bigIntGen)
      ]

    shrink s = zipWith scientific (QC.shrink $ Scientific.coefficient s)
                                  (QC.shrink $ Scientific.base10Exponent s)

nonNegativeScientificGen :: QC.Gen Scientific
nonNegativeScientificGen =
    scientific <$> (QC.getNonNegative <$> QC.arbitrary)
               <*> intGen

normalizedScientificGen :: QC.Gen Scientific
normalizedScientificGen = Scientific.normalize <$> QC.arbitrary

bigIntGen :: QC.Gen Int
bigIntGen = QC.sized $ \size -> QC.resize (size * 1000) intGen

intGen :: QC.Gen Int
#if MIN_VERSION_QuickCheck(2,7,0)
intGen = QC.arbitrary
#else
intGen = QC.sized $ \n -> QC.choose (-n, n)
#endif